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Scintillation Counters

• Scintillator + Photodetector
• Scintillator converts ionizing radiation to visible light
• Photodetector converts light to electrical signal

– Photomultiplier tube
– Photodiode
– CCD (Charge-Coupled Device)

• Detect and measure ionizing radiation
– Different materials good for detecting:

• Alpha
• Beta
• Gamma
• X-rays
• Neutrons

– Can measure radiation intensity and energy
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Scintillator Counter Applications

• Medical imaging
• Scientific research

– High energy physics experiments
– Astrophysics
– Nuclear stockpile research

• E.g. DARHT uses scintillators with CCDs for high resolution and speed
• Also: pRAD and the upcoming ECSE and MaRIE facilities

• Nuclear worker safety
• Detection of nuclear material

– Nonproliferation
– Homeland security
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Scintillation Process 

• Energy Conversion
– Ionizing radiation converted to form many “hot” electrons and holes

• Thermalization
– Electrons and holes undergo inelastic scattering
– Lose energy to the crystal as heat and relax to the band edges

• Localization
– Electrons and holes localize as excited states at luminescent centers

• Light Emission
– Electron and hole recombine at a luminescent center, emitting light



4

Material Influence on Scintillation

• Energy Conversion
– Host crystal structure determines efficiency of energy conversion

• High electron density materials efficiently capture gamma radiation
• Materials rich in hydrogen efficiently capture neutrons

• Thermalization
– The valence and conduction band dispersions control the mobility of the 

thermalizing holes and electrons, respectively

• Localization
– Capture rate is determined by the energy difference between the VBM and 

luminescent center’s ground state for holes, and the difference between the CBM 
and the luminescent center’s excited state for electrons

• Light Emission
– Rate of recombination determined by the luminescent center used
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Luminescent Center Requirements

• States must be within the band gap to capture electrons and holes
• States should be close to the valence and conduction bands for fast 

capture
• States should not be extremely close or thermal excitation could de-

localize captured charge carriers

Host Material 
Valence Band

Host Material Band Gap

Host Material 
Valence Band

Luminescent Center Excited State

Luminescent Center Ground State

Material Doped with ActivatorUn-doped Material
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Ce3+ as a Luminescent Center

• Lanthanides, such as Ce3+, are commonly used activators
• Energy levels relative to host can vary tremendously 

Images from G. Pilania, K.J. McClellan, C.R. Stanek, and B.P. Uberuaga, J. Chem. Phys. 148, 241729 (2018).

Possibly useable with
band gap engineering
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Goal: Scintillator Discovery

• Develop a way to screen an incredibly wide chemical space
• Discover new scintillators quickly and easily

Image from G. Pilania, K.J. McClellan, C.R. Stanek, and B.P. Uberuaga, J. Chem. Phys. 148, 241729 (2018).

Down-select
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Data-Driven Science Paradigm

• Discovery of novel scintillators has mostly been through trial-and-
error experimentation guided by chemical intuition.

• Computational scintillator prediction is difficult.
• Machine learning can be used to discover new scintillator materials.

Right image from C. Draxl and M. Scheffler, 2, 1 (2018), arXiv: 1805.05039
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Predicting Ce3+ energy levels

• Two useful parameters for predicting Ce3+ 4f and 5d1 energy levels:
• For 4f energy levels: U(6, A) – the 4f electron binding energy 

difference between Eu2+ and Eu3+

Image from G. Pilania, K.J. McClellan, C.R. Stanek, and B.P. Uberuaga, J. Chem. Phys. 148, 241729 (2018).
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Predicting Ce3+ 4f energy levels

• The chemical shift, E(EuQ, A), directly depends on U(6,A).

• E(EuQ, A) = E4f(6, 3+, A) – E4f(6,3+, vacuum)

Images from G. Pilania, K.J. McClellan, C.R. Stanek, and B.P. Uberuaga, J. Chem. Phys. 148, 241729 (2018).



11

Predicting Ce3+ 5d energy levels

• For 5d energy levels: D(Ce3+, A) – the 
crystal field depression or 
spectroscopic red shift

• The change in the energy difference 
between the 4f and lowest 5d energy 
levels of Ce3+ when going from 
vacuum to a host environment

• Highly dependent upon local 
environment!

Image from G. Pilania, K.J. McClellan, C.R. Stanek, and B.P. Uberuaga, J. Chem. Phys. 148, 241729 (2018).
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Materials Datasets

• Using two separate datasets that contain the U and D values for a 
set of compounds that exist in the Materials Project database.

P. Dorenbos, Journal of Luminescence 135, 93 (2013)
P. Dorenbos, Journal of Luminescence 91, 155 (2000) A. Jain et al. Apl Materials 1, 011002 (2013)
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Machine Learning Algorithm

• We use Kernel Ridge Regression (KRR)

• Kernel Ridge Regression is a modification of least-squares fitting
– The kernel is a function that can be applied to each pair of inputs to calculate 

inner products of those inputs in a higher-dimensional feature space
• Allows for tractable computation of nonlinear relationships in high or infinite dimensional space
• We use a Gaussian kernel in our calculations

– The ‘ridge’ is the addition of a penalty function that depends on the magnitude of 
the fitting coefficients

• Counteracts the tendency to ‘overfit’ the data to perfectly match the training data

Model predictions: Optimization:

Solving by setting gradient to zero:
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Current Status - descriptors

Image from G. Pilania, K.J. McClellan, C.R. Stanek, and B.P. Uberuaga, J. Chem. Phys. 148, 241729 (2018).
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Current Status - results

• U(6,A) is well described – 4f level are easy to predict
• D(Ce3+, A) is difficult – 5d levels are sensitive to local environment

Image from G. Pilania, K.J. McClellan, C.R. Stanek, and B.P. Uberuaga, J. Chem. Phys. 148, 241729 (2018).
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Doping Site Selection

• To describe the local environment, we first need to predict what site 
the Ce3+ dopant will occupy.

• Assumptions made:
– Any atomic site is a possible doping site.
– Ce3+ will not occupy any interstitial sites or form complex defect clusters.

• Methodology:
– Assign a penalty to ionic radius mismatch between Ce3+ and the site’s normal 

ion.
– Assume that a site being too small for Ce3+ is 3x worse than being too large.
– Assign a penalty to charge state difference between Ce3+ and the site’s normal 

ion.
– Assume a difference in charge state of 1 is equivalent to an ionic radius 

difference of 0.2 Å (where the site is too large).
– Select the site in the structure with the smallest penalty as the doping site.
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Local Environment Descriptors

• Gaussian Radial Distribution Function (RDF)
– Radial description of surrounding neighbors

• AGNI Fingerprints
– Product integral of RDF and Gaussian window functions, angular dependence

• Gaussian Symmetry functions
– Based on pair distances and angles, separated into radial and angular functions

• Voronoi Fingerprint
– Voronoi-tessellation based features

• Volume, area, and nearest-neighbor statistics
• Indices (number of i-edged facets), i-fold symmetry indices

• Gaussian Angular Fourier Series (AFS)
– Product of distance functionals and cosine of the angle of a pair from the origin

• Coordination Number
• Order Parameter Site Fingerprint

– Locates neighbor shells for a range of coordination numbers
• Local Difference in Electronegativity
• Crystal Field Splitting Spread – from a Point Charge model
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Local Descriptor Results

• AGNI Fingerprints and Gaussian Symmetry functions both encode 
local environment details – notably angular relationships
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AGNI and Gaussian optimization

• Reducing the featurized distance to 3.75 Å produces optimal results
• Crystal field splitting is controlled by nearest neighbor interactions

AGNI Gaussian Symmetry
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Issues with the Crystal Field Splitting Descriptor

• Crystal Field Spectrum Spread 
≠ Crystal Field Depression

• Crystal Field Spectrum Spread 
is highly sensitive to local 
atomic arrangement

– Doping with Ce3+ can cause very 
large local rearrangement around 
the Ce3+ doping site

– Possible to detect cases where this 
will be a problem using doping site 
selection criterion?

Image from G. Pilania, K.J. McClellan, C.R. Stanek, and B.P. Uberuaga, J. Chem. Phys. 148, 241729 (2018).

Crystal Field Spectrum Spread
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Summary, Acknowledgements, and Future Work

Local Environment descriptors can improve prediction of 
D(Ce3+,A), and thus 5d energy levels. [0.39 -> 0.33 eV RMSE] 

Future improvements could come from:
• Improved doping site selection function
• Optimized descriptor settings
• Pruning of database for crystal field splitting
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Kernel Ridge Regression Overview

• Regression is a form of supervised learning
– Start with a training set of input and corresponding outputs
– Predict the output of inputs not in the training set

• Learning a finite system has infinite solutions
– Assumptions made to choose the ‘best’ model
– Simpler is better

• Smoothness, or regularization, used to find simpler models
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Linear Regression

• Simplest form of regression
• Fitting function is in the shape:

• Fitting is done by minimizing the squared error in the 
training set:

• Optimization done by setting the gradient to zero:

Equations taken from M. Rupp, Int. J. Quantum Chem. 115, 1058 (2015).
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Ridge regression

• Linear regression is prone to overfitting errors
– Large coefficients βi that cancel in the training set
– In the prediction of new inputs, these cause large errors

• Ridge regression adds regularization to prevent 
overfitting
– Penalty term added to the optimization problem:

• Solving the optimization problem gives:

Equations taken from M. Rupp, Int. J. Quantum Chem. 115, 1058 (2015).
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Kernel ridge regression

• Kernel ridge regression adds non-linearity
• Maps inputs into a higher dimensional space and applies 

the linear algorithm there
– Mapping into higher dimensional space correspondingly 

increases computational complexity – how to avoid?
• The kernel trick

– ML algorithms can be written to only use inner products between 
inputs

– Kernel functions operate on input space vectors, but yield the 
same results as inner product evaluations in feature space

• The Gaussian kernel is widely applicable:

Equations taken from M. Rupp, Int. J. Quantum Chem. 115, 1058 (2015).
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Kernel ridge regression

• Fitting function is in the shape:

• Fitting is done by minimizing the squared error in the 
training set plus the regularization penalty:

• Optimization done by setting the gradient to zero:

Equations taken from M. Rupp, Int. J. Quantum Chem. 115, 1058 (2015).


